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An analytic solution of the problem of determination of aerodynamic forces
(drag, 1ift and side force) acting on an arbitrary three-dimensional body whose
motion satisfies the localization law is derived, It is assumed in the localiza-
tion law that the body is of convex shape and that the momentum acting on a
surface element depends only on conditions of flow and the local angle between
the velocity and the normal to the surface, This law is successfully applied in
many domains of aerodynamics and dynamics of flight, Particular cases of the
localization law are, for instance, various modifications of Newtonian law of air
resitance, laws which determine the action of rarefied gas on a body flying at
supersonic velocity, and the effect of light pressure on a body, As an example,
the problem of determination of aerodynamic properties of an elliptic cone is
considered,

1, Let us consider the flow around a body in conditions of the localization law [1],
i,e, we consider the body to be of convex shape and that the momentum acting on a
surface element depends only on the conditions of flow and on the local angle between
the inner normal n to the surface and the unit vector of the stream velocity V.

According to this theory the dimensionless momentum normalized with respect to the
dynamic head pV2/ 2 or its projections on the natural coordinates: local pressure p
and shearing stress T can be represented in the form

R—1

R
p= 2 A(v-n), T=(v-t) D) By(v-n) (1.1)
f=1 k=1

where t is the unit vector of the tangent to the surface element, lying in the plane of
vectors v and B, R is the order of the approximating polynomial, and {4,, B)) =
fi (M, Re, T,) are coefficients which depend on conditions of flow around the body
and can be obtained with the use of known theoretical or experimental methods.
We select the system of independent angles @ and @ (such system was used in [17 for
the case of flow around bodies of revolution) which is defined by the relationships
cosa = (v-i}), t@e=-—(v-ig)/(v-iy)

where i,, i, and i are the unit yectors of the system of axes attached to the body, Then
v = ijcosa + isinxcosp — igsinasing (1.2)

The dimensionless coefficient of the total aerodynamic force acting on a three-dimen-
sional body moving in a flow of gas or light is

cp — e,V 4 jHek (1,3)
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where ¢y, ¢y and c, are the dimensionless coefficients of drag, lift and side force, res-
pectively,and V, j = Vo / |v,| and k = ~~vg / |v,| are unit vectors of the velo-
city coordinate system,

Differential relationships were derived for ¢pin [1], For the determination of coef-
ficients of aerodynamic forces for an arbitrary three-dimensional body, whose motion
satisfies the assumptions of the localizability law and the arbitrary expansions (1,1) of
the local momentum taken from [1] we select variables & and ¢ . Then, using formu-
las (1,2) and (1, 3) and introducing the "reduced” drag coefficient

ext (o, @) = ¢x (& §) 4 Nr (1.4)
we obtain the second order equation in partial derivatives of the elliptic kind
Llex] = csctack + cx, + ctgack, + (R + 1)(R +2) Ad=@R-F+-1)¥r (1.5

and the relationship
¢, =R+ 1e¢, a =—R+1csina (1.6)
where

Chy=0cx/08 (b—a,9), VTr=0Pr+ R+2)Nz

R R—1
Ng ____51_ S (v.n){Rz_iAl(v-n)—l- Z [(A:m“

S k=1
R—k—1

(v-n)*"* — B, (v.n)"‘l]}ds

3
Op= g\ A+ R =) Ay (vony +

&
R—1
21 [k — BB —k — )(v-0)*** 4 (k 4 1)(v-n)"} +
k=1

(R +2) By (v-0)'1} dS

Sk is a characteristic area, and integration is carried out over the "illuminated” area
of surface S* which is determined by the condition (vn) > 0.

Note that the substitution (1, 4) considerably improves the smoothness of the right-
hand part of the equation for ¢., whichis important for solving this equation, The derived
system of equations makes it possible to include aerodynamic forces in the general sys-
tem of dynamic equations, These formulas can be used in experimental and theoretical
investigations, since with one of the components of aerodynamic forces determined, it is
easy to calculate the remaining components by formulas (1,6).

The system (1, 5),(1, 6) makes it possible to derive the solution for the problem of
determination of aerodynamic forces acting on three-dimensional bodies in the entire
range of angles o and ¢. This solution can also be used in problems of optimization
and establishment of generalized similarity laws under conditions of the localizability
law [2],

2, The determination of aerodynamic properties of an arbitrary three-dimensional
body reduces to the solution of Eq, (1. 5), In mathematical terms this problem can be
considered as one of finding function ¢,' (&, @) which is continuous and bounded at all
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points of a sphere of unit radius,

In variables o and ¢ which are analogs of a spherical system of coordinates the sphere
is transformed into a rectangle with boundaries 0 <{ ¢ <{ 2 and 0 < a < 7.

The conditions of periodicity of solution at coincident meridians ¢ = 0 and ¢ = 2n
of the sphere and the conditions of solution boundedness at the poles of the sphere o.=()
and & = % of the form

e (% ?) {’»7:0 = ¢! (2 @) L?:*Zf:’ S}C;c !:p=0 = c'l"@ i¢=2: (2.1)

[limet (@, @) | < oo, flimet (o, @) < oo
a0 [+ 2E

can be taken as appropriate boundary conditions (of the problem),

Solution of the boundary value problem (1, 5),(2,1) will be derived by the method of
expansion in eigenfunctions of the related homogeneous problem,

Equations for eigenvalues and eigenfunctions of operator L [c,!] are of the form

c}(@pcs& a+ey,, o, ctga+ (R -1)(R+2) el +het =0 (2.2)

The boundary value problem (2, 1), (2., 2) is a particular case of the boundary value
problem for the elliptic equation, and the boundary conditions (2, 1) of this problem are
equivalent to homogeneous boundary conditions,

Equation (2, 2) admits the separation of variables, hence we seek a solution of the form
' (@, @) = w (¢)v (@). Separating variables in Eq, (2.2) and boundary conditions
(2. 1), we obtain for function w (@) the Sturm-Liouville problem with the condition of
solution periodicity at the ends of the integration interval ¢ [0, 2]

w' (¢) + pw (9) =0
w( @) g = V(D) lgmer W (D oy = 2 (D) |-

The eigenvalues of this problem L, == 0, p, = m? (m = 1.2, . ..) and the cor-
responding to these eigenfunctions
stnmg
13 P = ] 2 e
Wy (q’) =1, W ({P} cos m (m =1, 2, )
constitute the complete system of orthogonal functions along segment ¢ [0, 2n] and
are bounded along the latter,

For each 4, function v(«) represents a particular case of the homogeneous boundary
value problem in eigenvalues with the condition of boundedness at the ends of the inte-
gration interval «l0, nl

" ’ - 2
V(@) +etg v () +[(RADR+2) +h— i |o@ =0 @)
[limv(a)[<oc, |limv(a)|< oo (2.4)
x>0 a->m

The substitution z = cosc. reduces Eq, (2, 3) to the general Legendre equation whose
solution exists for any complex A and m [3], For positive integral m solutions which
satisfy boundary conditions (2, 4) exist only for

Ay = n(n + 1) — (R + (R - 2), n=mymi-1, m--2, ... (2.5)
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and are "adjoint” Legendre polynomials of the m-th order
mos g amiz 4P, (@)
P (@)= (1 —27) T
{P,, () denote ordinary Legendre polynomials), Thus the boundary value problem
(2. 3),(2. 4) has for each m the eigenvalues A, (2. 5) and the related system of orthogo-
nal eigenfunctions, Hence the complete set of eigenvalues of the linear operator L{ ¢,}]
for boundary conditions is defined by

Mo=nn 1) —(R+1(R+2), »rn=012... (2.8)

' : 1
To that set corresponds the complete closed system of eigenfunctions Cx,, ,,

r r=momtl,mi-2,, ..

sin mo

1 _ 1
Cag n = P, (cos ), Cxm,n = Py (cos o) {cos mcp} s m=0,1,2,...; (&7

m=1,2...,n

which are orthogonal inregion O <C a <{n and U< @ < 2n,

3, To solve the nonhomogeneous equation (1, 5) with boundary conditions we expand
funct.en Wy (a,) inregion 0 <C o<{2n and 0 < @ < & into a convergent La-
place series in eigenfunctions (2, 7), using the completeness of eigenfunctions in that
region and the reasonable smoothness of function ¥z (&, ¢) . We obtain

Wr (o ¢) = D) by nPr(c080) + 2 D) (b, ncOsme + (3.1)
Nzl =1 m=1

Am, n Sin mg) Py (cos o)

™on

by, n = 2_"5;.11.35 5 W (o, @) Py (cos o) sin o dg do
2 4—: 0 3 o
A, n == —%—{— -%%—};—-}%S S‘FR (&, @) Py (cos o) sin me sin o dg do (3.2)
4 0
Zn -1 ziwmifgg » :
b, = WMB ‘\‘I*R(ot, @) P {cos o) cos mg sin o dp da
90

m=1,2,...,n

Solution of the nonhomogeneous problem is also sought in the form of a Laplace series
with undetermined coefficients ¢y, and 4

Man
[o<] o] ki
ol
e (e @) = D conPu(cosad) + D) D) (cm,nco0s mep - (3.3)
M=) ED R

A, » 8in m@) Py (cos o)

Since the eigenvalue Ap,, = (), hence, as shown in [4], the problem has no solution for
an arbirary Wy {@,p) in the right-hand part of Eq. (1, 5), For a solution to exist it is

necessary to impose on function Wg (o,%) the supplementary condition for the coeffici-
ents in the expansion of that function into series (3,2), corresponding to Ap,y, tovanish,
i.e,
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bo,rs1 = bmpan = Gnpp1 =0, m=12,... RI+1 (8.4)

The analysis of function Wy (a,p) presented above and specific calculations show that
for the considered class of problems function Vg satisfies condition (3, 4), Hence any
arbitrary linear combination of eigenfunctions (2, 7) which correspond to the eigenvalue

Ar4y = 0 and is representable in the form B

YR = ko, p41Pri1 (cos a) 4- Z (km, ry1 COS MY - (3. 9)

m=1

H, ryysinmg) Pgy, (cos o)

where ko piqs ko r41 and H,, r+ are arbitrary constants, will satisfy the considered
problem,

It is obvious that functlon Yr.1 is in essence a general solution of the related homo-
geneous problem (1, 5),(2.1), The solution of the boundary value problem (1, 5), (2. 1)
becomes nonunique and generally contains [2(R -4 1) -+ 1] constants of integration
which have to be determined by the physical conditions of a specific problem,

The remaining coefficients of solution (3, 3) are determined by the coefficients (3, 2)
of expansion of function Wy (t,¢) and eigenvalues A, using formulas

(R+ ) (R 1)am n 3.6
Cnn = (RFDE T —n @ O 9 = [ F g —np i 0

Consequently, the final solution of the problem of determination of the coefficient of
drag for an arbitrary three -dimensional body, which satisfies the localization law foran
arbitrary form of expansion of local momentum (1,1) throughout the variation range of
angles ¢ and ¢ (0 <C ¢ <{ 2mand 0 < @ < 7), is of the form

ol(e, @) =Ygy + Z, o, nPy (cOS O) + Z, 2 (em, ncosme -+ (3.7)

n=0 n=1 m=-=1
n#ER41 n#R4-1

din, n Sinwmp) Py’ (cos o)

Note that a solution of similar form but with another system of variables was presented
in [5] for a particular case (Newton's law of air resistance) without the general statement
and analysis of the boundary value problem, when expansion (1,1) contains only one non-
zero coefficient A4, == 0. Constants of integration in formula (3, 7) can be determined by
solving the system of linear algebraic equations which is derived from (3, 7) for known
values of its left-hand part obtained from theoretical or experimental data at [2 (R -

1) + 1] points,

The analysis of calculations carried out for snecific bodies shows that the determina-
tion of constants of integration by using experimental data compensates to a consider-
able extent the inaccuracy of the "localization method"”, Additional conditions related
to the flow symmetry considerably simplify solution (3, 7) and reduce the number of con-
stants of integration,

4, The majority of real aerodynamic bodies contain one or more planes of symmetry.
If ¢ =0 and ¢ = n define the plane of symmetry of the considered body, the non-
symmetric terms in solution (3, 7) and formulas (3,1) and (3, 5) vanish @m,n = dmpn ==
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Hp,n = 0, the solution contains (R + 2) constants of integration, and is of the form

R+1 o n
el (a, 9) = 2 Epy pyr €08 m@PY,, (cos a) + 2 2 Cmp COS mP Py (cosa)  (4,1)
m=0 n==0 m=0

netR41

If the plane ¢ = 4 a/2 is that of the body symmertry, the solution is of the form

[(R+1)/2]
@, ) = 2 Kym, R4y €08 2m@PY" (cos a) + (4.2)
m==0

[R/2]

D) Hompt, ey Sin @m +1) 9PEHY (cos o) +
m=0

o [n/2]

Z { Z Cym,n €03 2mQPE™ (cos a) +
n=0 m=Q
[(n—1)/2]

Bymiyn 810 (2m 4 1) ¢ PE™H (cos a)} nER+1
m=0

The number of coefficients in solution (4, 2) required for calculations reduces to half of
that needed in the general solution (3.7), The number of constants of integration
(kam,r+1r Hame,r+1) 18 equal (R 4~ 2). If the considered body has two planes of sym-
metry @ ==0, m and ¢ = - m/2, solution (3, 7) is considerably simplified (the se-
cond and fourth sums in (4, 2) disappear) and the number of constants of integration is
reduced to [1 4- R/ 2].

It should be pointed out that the described general method of derivation of solution
(3. 7) for the nonhomogeneous elliptic equation (1, 5) with boundary conditions (2, 1)
does not exclude the possibility of obtaining a different form of solution of that equation,
when function Wy (@,p) in the right-hand side of the equation is of a special form
which admits a direct determination of the particular solution ¥ {(a,9) of Eq, (1. 5)
which satisfies conditions (2,1), In that case the solution of the boundary value problem
(1, 5), (2,1) can be presented in the form

et (0,9) = Ygy + F (@, 9)

6, Asan example of the determination of aerodynamic properties of a three-dimen-
sional bodv we present the results of calculations for an elliptic cone (Fig, 1),

To simplify computations the case of R = 2
and 4, = A4, = 0 was considered, Expansion(1,1)
of local momentum is of the form

]):Ag(V-ﬂ)z, r:Bl(v-n)(v-t)

Coefficients A, = 2 (2 — o) and B; = 2 o_ (where
o and ¢_ are the accommodation coefficients of
Fig, 1 normal and tangent momenta, respectively) corre-
spond to conditions of free-molecule flow of rare-
fied gas with diffusion-mirror reflection pattern, Coefficients 4, == % and B, = 0
correspond to the Newtonian hypersonic flow,
In the range of angles @ and @ in which the stream flows over the whole surface of
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the elliptic cone the solution for the "reduced"” drag coefficient ¢! (a, ¢) is of the form

ext (@, @) = koPy (cos @) + &y cos 2 @Ps? (cos @) + #/5 (A, — By) cos &

Py (cos @) = /2 (5 cos3a — 3 cos &), Ps?(cos o) = 15 cos o sin? «
Since N, == — By cos &, hemce, in accordance with (1, 4), the solution for the physical
drag coefficient ¢ (2, @) fs of the form

ey (@, @) = koPg (€08 &) + ko058 20P3% (cos o) + /3 (3 A, + 2 By)cosa

The constants of integration %, and %, are determined by known theoretical or experi-
mental values ¢’ (& = 0) and c,* (e = a *, p = 0) and Pa(cosa*) =0 , We have

cx* — /5 (342 4 2B) cos o*
15sin? a* cos a*

1
ko == ¢° — 5 BAz +2By), ky=
Formulas (1, 6) yield for the coefficients of lift ¢, and side force ¢, the expressions
ko

1
ey (2, cp)x?c}ca = sin a{ P (1 — 5cos?a) -4

Skz cos 2¢ (cos2 a - cos 20) — —%— (A2 — B;)}

¢, (@ 9= — g5ms c}% == 10kz 8in 2¢ cos a sin &
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